Purification and characterization of recombinant endoglucanases from the pine wood nematode Bursaphelenchus xylophilus.

نویسندگان

  • Hajime Shibuya
  • Taisei Kikuchi
چکیده

A family of endoglucanases belonging to glycoside hydrolase family (GHF) 45 have been isolated from the pine wood nematode Bursaphelenchus xylophilus. Here we describe the purification and characterization of the recombinant enzymes, named Bx-ENG-1, 2, and 3, expressed in Pichia pastoris. The respective molecular masses of purified Bx-ENG-1, 2, and 3 were estimated to be 18, 33-39, and 100-140 kDa by SDS-PAGE, and 18, 67, and 252 kDa by gel filtration, suggesting that Bx-ENG-1 existed in an unglycosylated monomeric form and Bx-ENG-2 and Bx-ENG-3 in a glycosylated dimeric form. The enzymatic properties of the recombinant enzymes were similar to each other: optimal activity at 60 degrees C at about pH 6.0, like other endoglucanases of GHF45. The recombinant enzymes displayed the highest activity toward lichenan, and lower activities were observed on carboxymethyl cellulose and amorphous cellulose. Nematode enzymes also hydrolyzed glucomannan, the most abundant hemicellulose in the cell walls of softwood. These substrate specificities suggest that B. xylophilus endoglucanases acted on the cellulose-hemicellulose complex in the cell walls, resulting in a weakening of the mechanical strength of the cell walls to facilitate the nematode's feeding on plant cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Screening and Functional Analysis of the Peroxiredoxin Specifically Expressed in Bursaphelenchus xylophilus—The Causative Agent of Pine Wilt Disease

The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease. Accurately differentiating B. xylophilus from other nematodes species, especially its related species B. mucronatus, is important for pine wood nematode detection. Thus, we attempted to identify a specific protein in the pine wood nematode using proteomics technology. Here, we compared the proteomes of...

متن کامل

Identification of Autophagy in the Pine Wood Nematode Bursaphelenchus xylophilus and the Molecular Characterization and Functional Analysis of Two Novel Autophagy-Related Genes, BxATG1 and BxATG8.

The pine wood nematode, Bursaphelenchus xylophilus, causes huge economic losses in pine forests, has a complex life cycle, and shows the remarkable ability to survive under unfavorable and changing environmental conditions. This ability may be related to autophagy, which is still poorly understood in B. xylophilus and no autophagy-related genes have been previously characterized. In this study,...

متن کامل

On the Taxonomy and Morphology of the Pine Wood Nematode, Bursaphelenchus xylophilus (Steiner &Buhrer 1934) Nickle 1970.

During the past 3 yr, nematologists in the United States have found specimens of Bursaphelenchus sp. in the wood of dead and dying pine trees. This nematode-host association resembles a similar interaction reported from Japan where pine trees are being killed by the pine wood nematode. This taxonomic research was conducted to determine if the Japanese pine wood nematode and similar populations ...

متن کامل

Cloning and Characterization of a 2-Cys Peroxiredoxin in the Pine Wood Nematode, Bursaphelenchus xylophilus, a Putative Genetic Factor Facilitating the Infestation

The pine wood nematode, Bursaphelenchus xylophilus, is an invasive plant parasitic nematode and a worldwide quarantine pest. An indigenous species in North America and the causal agent of pine wilt disease, B. xylophilus has devastated pine production in Southeastern Asia including Japan, China, and Korea since its initial introduction in the early 1900s. The reactive oxygen species (ROS) is th...

متن کامل

A 2-Cys peroxiredoxin in response to oxidative stress in the pine wood nematode, Bursaphelenchus xylophilus

The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease that has devastated pine forests in Asia. Parasitic nematodes are known to have evolved antioxidant stress responses that defend against host plant defenses. In this study, the infestation of whitebark pine, Pinus bungean, with B. xylophilus led to a significant increase in plant hydrogen peroxide (H2O2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 72 5  شماره 

صفحات  -

تاریخ انتشار 2008